Tutorial Sensor Gyro (MPU6050) Pada Arduino
Tutorial kali ini menggunakan salah satu jenis sensor yang umum digunakan untuk aeromodeling yaitu sensor MPU6050. Sensor MPU6050 ini adalah sensor yang dapat membaca kemiringan sudut berdasarkan data dari sensor accelero dan gyroscope. Selain itu sensor ini juga dapat membaca suhu lingkungan sekitar. Untuk jalur komunikasi sensor ini menggunakan jalur I2C
Alat dan Bahan
- Arduino
- Breadboard (Optional)
- Sensor MPU6050
- Kabel Jumper Secukupnya
Rangkaian
Koneksi Arduino Dengan MPU6050 | |
---|---|
MPU6050 | Arduino |
VCC | 5V |
GND | GND |
SCL | A5 |
SDA | A4 |
INT | 2 |
Listing Program
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include "I2Cdev.h"#include "MPU6050_6Axis_MotionApps20.h" | |
//#include "MPU6050.h" // not necessary if using MotionApps include file | |
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE | |
#include "Wire.h" | |
#endif | |
// class default I2C address is 0x68 | |
// specific I2C addresses may be passed as a parameter here | |
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board) | |
// AD0 high = 0x69 | |
MPU6050 mpu; | |
//MPU6050 mpu(0x69); // | |
#define OUTPUT_READABLE_YAWPITCHROLL | |
#define INTERRUPT_PIN 2 // use pin 2 on Arduino Uno & most boards | |
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6) | |
bool blinkState = false; | |
// MPU control/status vars | |
bool dmpReady = false; // set true if DMP init was successful | |
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU | |
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) | |
uint16_t packetSize; // expected DMP packet size (default is 42 bytes) | |
uint16_t fifoCount; // count of all bytes currently in FIFO | |
uint8_t fifoBuffer[64]; // FIFO storage buffer | |
// orientation/motion vars | |
Quaternion q; // [w, x, y, z] quaternion container | |
VectorInt16 aa; // [x, y, z] accel sensor measurements | |
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements | |
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements | |
VectorFloat gravity; // [x, y, z] gravity vector | |
float euler[3]; // [psi, theta, phi] Euler angle container | |
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector | |
// packet structure for InvenSense teapot demo | |
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' }; | |
// ================================================================ | |
// === INTERRUPT DETECTION ROUTINE === | |
// ================================================================ | |
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high | |
void dmpDataReady() { | |
mpuInterrupt = true; | |
} | |
// ================================================================ | |
// === INITIAL SETUP === | |
// ================================================================ | |
void setup() { | |
// join I2C bus (I2Cdev library doesn't do this automatically) | |
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE | |
Wire.begin(); | |
Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties | |
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE | |
Fastwire::setup(400, true); | |
#endif | |
Serial.begin(115200); | |
while (!Serial); // wait for Leonardo enumeration, others continue immediately | |
// NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio | |
// Pro Mini running at 3.3v, cannot handle this baud rate reliably due to | |
// the baud timing being too misaligned with processor ticks. You must use | |
// 38400 or slower in these cases, or use some kind of external separate | |
// crystal solution for the UART timer. | |
// initialize device | |
Serial.println(F("Initializing I2C devices...")); | |
mpu.initialize(); | |
pinMode(INTERRUPT_PIN, INPUT); | |
// verify connection | |
Serial.println(F("Testing device connections...")); | |
Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed")); | |
// wait for ready | |
Serial.println(F("\nSend any character to begin DMP programming and demo: ")); | |
while (Serial.available() && Serial.read()); // empty buffer | |
while (!Serial.available()); // wait for data | |
while (Serial.available() && Serial.read()); // empty buffer again | |
// load and configure the DMP | |
Serial.println(F("Initializing DMP...")); | |
devStatus = mpu.dmpInitialize(); | |
// supply your own gyro offsets here, scaled for min sensitivity | |
mpu.setXGyroOffset(220); | |
mpu.setYGyroOffset(76); | |
mpu.setZGyroOffset(-85); | |
mpu.setZAccelOffset(1788); // 1688 factory default for my test chip | |
// make sure it worked (returns 0 if so) | |
if (devStatus == 0) { | |
// turn on the DMP, now that it's ready | |
Serial.println(F("Enabling DMP...")); | |
mpu.setDMPEnabled(true); | |
// enable Arduino interrupt detection | |
Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)...")); | |
attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING); | |
mpuIntStatus = mpu.getIntStatus(); | |
// set our DMP Ready flag so the main loop() function knows it's okay to use it | |
Serial.println(F("DMP ready! Waiting for first interrupt...")); | |
dmpReady = true; | |
// get expected DMP packet size for later comparison | |
packetSize = mpu.dmpGetFIFOPacketSize(); | |
} else { | |
// ERROR! | |
// 1 = initial memory load failed | |
// 2 = DMP configuration updates failed | |
// (if it's going to break, usually the code will be 1) | |
Serial.print(F("DMP Initialization failed (code ")); | |
Serial.print(devStatus); | |
Serial.println(F(")")); | |
} | |
// configure LED for output | |
pinMode(LED_PIN, OUTPUT); | |
} | |
// ================================================================ | |
// === MAIN PROGRAM LOOP === | |
// ================================================================ | |
void loop() { | |
// if programming failed, don't try to do anything | |
if (!dmpReady) return; | |
// wait for MPU interrupt or extra packet(s) available | |
while (!mpuInterrupt && fifoCount < packetSize) { | |
// other program behavior stuff here | |
// . | |
// . | |
// . | |
// if you are really paranoid you can frequently test in between other | |
// stuff to see if mpuInterrupt is true, and if so, "break;" from the | |
// while() loop to immediately process the MPU data | |
// . | |
// . | |
// . | |
} | |
// reset interrupt flag and get INT_STATUS byte | |
mpuInterrupt = false; | |
mpuIntStatus = mpu.getIntStatus(); | |
// get current FIFO count | |
fifoCount = mpu.getFIFOCount(); | |
// check for overflow (this should never happen unless our code is too inefficient) | |
if ((mpuIntStatus & 0x10) || fifoCount == 1024) { | |
// reset so we can continue cleanly | |
mpu.resetFIFO(); | |
Serial.println(F("FIFO overflow!")); | |
// otherwise, check for DMP data ready interrupt (this should happen frequently) | |
} else if (mpuIntStatus & 0x02) { | |
// wait for correct available data length, should be a VERY short wait | |
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); | |
// read a packet from FIFO | |
mpu.getFIFOBytes(fifoBuffer, packetSize); | |
// track FIFO count here in case there is > 1 packet available | |
// (this lets us immediately read more without waiting for an interrupt) | |
fifoCount -= packetSize; | |
#ifdef OUTPUT_READABLE_QUATERNION | |
// display quaternion values in easy matrix form: w x y z | |
mpu.dmpGetQuaternion(&q, fifoBuffer); | |
Serial.print("quat\t"); | |
Serial.print(q.w); | |
Serial.print("\t"); | |
Serial.print(q.x); | |
Serial.print("\t"); | |
Serial.print(q.y); | |
Serial.print("\t"); | |
Serial.println(q.z); | |
#endif | |
#ifdef OUTPUT_READABLE_EULER | |
// display Euler angles in degrees | |
mpu.dmpGetQuaternion(&q, fifoBuffer); | |
mpu.dmpGetEuler(euler, &q); | |
Serial.print("euler\t"); | |
Serial.print(euler[0] * 180/M_PI); | |
Serial.print("\t"); | |
Serial.print(euler[1] * 180/M_PI); | |
Serial.print("\t"); | |
Serial.println(euler[2] * 180/M_PI); | |
#endif | |
#ifdef OUTPUT_READABLE_YAWPITCHROLL | |
// display Euler angles in degrees | |
mpu.dmpGetQuaternion(&q, fifoBuffer); | |
mpu.dmpGetGravity(&gravity, &q); | |
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); | |
Serial.print("ypr\t"); | |
Serial.print(ypr[0] * 180/M_PI); | |
Serial.print("\t"); | |
Serial.print(ypr[1] * 180/M_PI); | |
Serial.print("\t"); | |
Serial.println(ypr[2] * 180/M_PI); | |
#endif | |
#ifdef OUTPUT_READABLE_REALACCEL | |
// display real acceleration, adjusted to remove gravity | |
mpu.dmpGetQuaternion(&q, fifoBuffer); | |
mpu.dmpGetAccel(&aa, fifoBuffer); | |
mpu.dmpGetGravity(&gravity, &q); | |
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); | |
Serial.print("areal\t"); | |
Serial.print(aaReal.x); | |
Serial.print("\t"); | |
Serial.print(aaReal.y); | |
Serial.print("\t"); | |
Serial.println(aaReal.z); | |
#endif | |
#ifdef OUTPUT_READABLE_WORLDACCEL | |
// display initial world-frame acceleration, adjusted to remove gravity | |
// and rotated based on known orientation from quaternion | |
mpu.dmpGetQuaternion(&q, fifoBuffer); | |
mpu.dmpGetAccel(&aa, fifoBuffer); | |
mpu.dmpGetGravity(&gravity, &q); | |
mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity); | |
mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q); | |
Serial.print("aworld\t"); | |
Serial.print(aaWorld.x); | |
Serial.print("\t"); | |
Serial.print(aaWorld.y); | |
Serial.print("\t"); | |
Serial.println(aaWorld.z); | |
#endif | |
#ifdef OUTPUT_TEAPOT | |
// display quaternion values in InvenSense Teapot demo format: | |
teapotPacket[2] = fifoBuffer[0]; | |
teapotPacket[3] = fifoBuffer[1]; | |
teapotPacket[4] = fifoBuffer[4]; | |
teapotPacket[5] = fifoBuffer[5]; | |
teapotPacket[6] = fifoBuffer[8]; | |
teapotPacket[7] = fifoBuffer[9]; | |
teapotPacket[8] = fifoBuffer[12]; | |
teapotPacket[9] = fifoBuffer[13]; | |
Serial.write(teapotPacket, 14); | |
teapotPacket[11]++; // packetCount, loops at 0xFF on purpose | |
#endif | |
// blink LED to indicate activity | |
blinkState = !blinkState; | |
digitalWrite(LED_PIN, blinkState); | |
} | |
} |
Post a Comment